您现在的位置:香港挂牌最完整篇彩图 > 香港挂牌最完整篇彩图 >

设计基于FPGA的串行通用异步收发器

发布时间: 2019-08-13

  。常常用于短距离、低速、低成本的通讯中。8250、8251、NS16450等芯片都是常见的UART器件。基本的UART通信只需要两条(RXD、TXD)就可以完成数据的相互通信,接收与发送是全双工形式。TXD是UART发送端,为输出;RXD是UART接收端,为输入。

  UART的基本特点是:(1)在信号线上共有两种状态,可分别用逻辑1(高电平)和逻辑0(低电平)来区分。在发送器空闲时,数据线应该保持在逻辑高电平状态。(2)起始位(Start Bit):发送器是通过发送起始位而开始一个字符传送,起始位使数据线状态,提示接受器数据传输即将开始。

  (3)数据位(Data Bits):起始位之后就是传送数据位。数据位一般为8位一个字节的数据(也有6位、7位的情况),低位(LSB)在前,高位(MSB)在后。(4)校验位(parity Bit):可以认为是一个特殊的数据位。校验位一般用来判断接收的数据位有无错误,一般是奇偶校验。在使用中,该位常常取消。

  (5)停止位:停止位在最后,用以标志一个字符传送的结束,它对应于逻辑1状态。(6)位时间:即每个位的时间宽度。起始位、数据位、校验位的位宽度是一致的,停止位有0.5位、1位、1.5位格式,一般为1位。(7)帧:从起始位开始到停止位结束的时间间隔称之为一帧。

  (8)波特率:UART的传送速率,用于说明数据传送的快慢。在串行通信中,数据是按位进行传送的,因此传送速率用每秒钟传送数据位的数目来表示,称之为波特率。如波特率9600=9600bps(位/秒)。

  FPGAUART系统组成 :如下图所示,FPGA UART由三个子模块组成:波特率发生器;接收模块;发送模块;

  模块设计:系统由四部部分组成:顶层模块;波特率发生器;UART接收器; UART发送器.

  异步收发器的顶层模块由波特率发生器、UART接收器和UART发送器构成。UART发送器的用途是将准备输出的并行数据按照基本UART帧格式转为TXD信号串行输出。UART接收器接收RXD串行信号,并将其转化为并行数据。

  波特率发生器就是专门产生一个远远高于波特率的本地时钟信号对输入RXD不断采样,使接收器与发送器保持同步。波特率发生器实际上就是一个分频器。可以根据给定的系统时钟频率(晶振时钟)和要求的波特率算出波特率分频因子,算出的波特率分频因子作为分频器的分频数。波特率分频因子可以根据不同的应用需要更改。

  由于串行数据帧和接收时钟是异步的,由逻辑1转为逻辑0可以被视为一个数据帧的起始位。然而,为了避免毛刺影响,能够得到正确的起始位信号,必须要求接收到的起始位在波特率时钟采样的过程中至少有一半都是属于逻辑0才可认定接收到的是起始位。由于内部采样时钟bclk周期(由波特率发生器产生)是发送或接收波特率时钟频率的16倍,所以起始位需要至少8个连续bclk周期的逻辑0被接收到,才认为起始位接收到,接着数据位和奇偶校验位将每隔16个bclk周期被采样一次(即每一个波特率时钟被采样一次)。如果起始位的确是16个bclk周期长,那么接下来的数据将在每个位的中点处被采样。

  刚刚录制了一个fpga开发流程的视频,该视频为投石问路,主要是想听听大家对于小梅哥在录制视频时需要注意的内容以及希望系列

  在2019年MWC大会的第一天,英特尔又推出了一款针对5G应用的FPGA加速卡PAC N3000。这...

  据外媒报道,安全研究人员发现,他们能够使用简单的30美元FPGA(现场可编程门阵列)芯片攻破微软的B...

  近年,国内不少AI初创企业纷纷推出了自己的AI专用芯片,物联网少量多样,是一个非常碎片化的市场。在各...

  FPGA是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物,它由输入/输出块、可配置逻...

  Aupera官方消息显示,该公司致力于开发全球领先的视频编解码、内容识别及存储的超融合创新架构,目标...

  英特尔公司近日宣布收购Omnitek,后者是一家领先的优化视频和视觉FPGA IP解决方案提供商。O...

  输入系统的有正有负的模拟信号在AD采样前,会加上了直流偏置变成全正信号才输入AD的,所以在AD采样后...

  本篇文章,我们将从与自动驾驶的关系、加速中遇到的挑战、量化计算、节约资源和带宽五个方面,介绍 ACU...

  以前在学生时代的时候对于MCU退耦电容的作用理解的并不是很透彻,导致不是很关心退耦电容的放置位置,退...

  双线性插值顾名思义是线性插值Pro,为了说明白什么是双线性插值,首先得先从线性插值说起。那么什么又是...

  GJB1553B数据总线采用Manchester编码解码协议,以异步、命令/响应方式执行数据传输,通...

  大多数嵌入式工程师都熟悉UART:通用异步接收器/发送器。它是一个微控制器外设,可将输入和输出的数据...

  在数字系统的设计中,FPGA+ARM 的系统架构得到了越来越广泛的应用,FPGA主要实现高速数据的处...

  现代社会芯片是一个大概念,几乎无处不芯片,就连家里照明的LED等都需要外延芯片才能激发二极管发光。所...

  在FPGA中,如果要将一个采样率为480MHz,中频频率为302.5MHz的信号变频到零中频的基带信...

  现在随着GPU通用计算能力增强,一些计算任务已经可以交由GPU去处理了。除了GPU外,现在还有一类芯...

  数据中心设备制造商长期以来一直热衷于利用FPGA可能实现的大规模并行性,以在高效的功率预算内实现与需...

  支持第四代 PCIe的赛灵思首款轻量级加速卡,面向数据中心关键工作负载,在更大吞吐量,更低时延和更高...

  现在随着GPU通用计算能力增强,一些计算任务已经可以交由GPU去处理了。除了GPU外,现在还有一类芯...

  近来涌现的技术挑战迫使业界跳出传统的通用(one-size-fits-all)型CPU标量处理解决方...

  MKR Vidor 4000作为一款拇指型的开发板,小巧精致是它固有的特性,这是优点,同时也是缺点。...

  大多数美国人认为黑色星期五是一年中最大的购物盛会。毫无疑问,这个数字是巨大的,据估计,2017年黑色...

  对于很多人来说,人工智能可能就是手机中的智能助手,就是云计算中的大数据分析。人工智能是一个更加广泛的...

  近两年,RISC-V在国内掀起一片热潮,被视作国产芯“自主可控”的发展契机。2018年还先后成立了中...

  大家好,又到了学习时间了,学习使人快乐。今天我们来简单的聊一聊以太网,以太网在FPGA学习中属于比较...

  据悉,戴尔EMC和富士通两家大型服务器原始设备制造商也加入了进来 ,戴尔EMC增加了R640、R74...

  问题:ESP8266有几个串口? 答:一个半。 先说一个完整的,这个比较常用。 以第三节生成的...

  AI语音助手和AI图像优化是离我们最近的AI应用,然而这只是AI能力比较初级的体现,未来,AI将会以...

  Intel的全新系列Stratix 10产品可以说是非常具有跨时代意义的,另外此系列的产品产品性也非...

  据统计,约有25%的企业选择入局AI/ML以保持企业自身的竞争力,未来两年内,将会有接近四分之三的企...

  变送器电路包括输入保护,缓冲器和激光二极管驱动器。 UART信号(或任何数据信号)被馈入第一个反相缓...

  FPGA是一种半定制电路,主要应用于专用集成电路,在航空航天/国防、消费电子、电子通讯等领域有着不可...

  芯片,一个特别专业的领域,因为中美之间的贸易摩擦,走进大众视野。在“华为风波”中,当海思亮出“备胎”...

  要将数据保存到磁带上,我们必须转换我们的串行数据(来自UART)到磁带盒驱动器可以记录的音频信号。考...

  比如我要对一个1bit位宽的控制信号做延时后送给3个模块,第一个模块要延时100个时钟,第二个模块延...

  定义信号类型:原来模块中的输入信号,定义成reg 类型,原来模块中的输出信号,定义为wire类型,但...

  在输入信号到输出信号中,因为经过的传输路径、寄存器、门电路等器件的时间,这个时间就是时序。开发工具不...

  对于全球第一大FPGA厂商赛灵思而言,2018年可以看做是一个新的起点。今年的1月29日,赛灵思迎来...

  FPGA 是一堆晶体管,你可以把它们连接(wire up)起来做出任何你想要的电路。它就像一个纳米级...

  人工智能技术是自动驾驶的基础,算法、算力和数据是其三大要素。本文探讨的就是其中的“算力”。算力的高低...

  eFPGA具有输入和输出引脚的外环,将eFPGA连接到SoC的其它部分,这些引脚也连接到可编程的互连...

  在美国宣布制裁华为之后,中国企业被卡脖子的报道铺天盖地,在普通人眼里处理器、操作系统是最出名的,但实...

  本博文介绍了利用 POST_CRC 试错的方法,但总体而言,赛灵思推荐在所有架构上使用 Soft E...

  据MRFR统计2018年全球FPGA市场规模为60亿美元左右,随着AI+5G的应用逐步展开,其市场规...

  自行设计Flash读写控制器的优点在于可控性很高,缺点在于需要花费时间设计并进行稳定性测试。相应的,...

  目前,许多公司都提出了新型的计算机高速总线,如Arapahoe总线标准和HyperTransport...

  PLC的程序是由计算机编译完加载至PLC固件内,由PLC固件执行。FPGA的程序是由自己开发工具生成...

  全球发展最快的FPGA公司——广东高云半导体科技股份有限公司(以下简称“高云半导体”)宣布任命两家领...

  TL16C552A是流行的TL16C550B异步通信元件(ACE)的增强型双通道版本。该器件在微机或微处理器系统中同时提供两个串行输入/输出接口。每个通道对从外围设备或调制解调器接收的数据字符执行串行到并行转换,并对由CPU传输的数据字符进行并行到串行转换。在功能操作期间,CPU可以随时读取双ACE的每个通道的完整状态。获得的信息包括正在执行的传输操作的类型和条件以及遇到的错误条件。 除了双通信接口功能外,TL16C552A还为用户提供双向并行数据端口,完全支持并行Centronics型打印机接口。并行端口和两个串行端口为IBM PC /AT兼容计算机提供单个设备,以便为三个系统端口提供服务。可编程波特率发生器可以将定时参考时钟输入除以1和(2 16 -1)之间的除数。 TL16C552A采用68引脚塑料引线芯片载体(FN)封装和80引脚TQFP(PN)封装。 TL16C552AM采用68引脚陶瓷四方扁平(HV)封装。 特性 IBM PC /AT TM 兼容 两个TL16C550 ACE 增强型双向打印机端口 16字节FIFO可减少CPU中断 高达16-MHz时钟速率,今期管家姿报码彩图,最高可达1-Mbaud操作 发送,接收每个通道独立控制的线路状态和数据集中断...

  TL16C752B是一款双通用异步接收器/发送器(UART),具有64字节FIFO,自动硬件/软件流控制,数据速率高达3 Mbps。 TL16C752B提供增强功能。它有一个传输控制寄存器(TCR),用于存储接收器FIFO阈值电平,以便在硬件和软件流控制期间启动/停止传输。使用FIFO RDY寄存器,软件在一次访问中获得所有四个端口的TXRDY /RXRDY状态。片上状态寄存器为用户提供错误指示,操作状态和调制解调器接口控制。可以定制系统中断以满足用户要求。内部环回功能允许板载诊断.UART通过外设8位总线发送数据,发送到TX信号,并接收RX信号上的字符。字符可以编程为5,6,7或8位。 UART具有64字节接收FIFO和发送FIFO,可编程为在不同触发电平下中断。 UART根据可编程除数及其输入时钟生成自己想要的波特率。它可以发送偶数,奇数或无奇偶校验以及1,1.5或2个停止位。接收器可以检测中断,空闲或帧错误,FIFO溢出和奇偶校验错误。发送器可以检测FIFO下溢。 UART还包含用于调制解调器控制操作的软件接口,并具有软件流控制和硬件流控制功能。 TL16C752B采用48引脚PT(LQFP)封装。特性 ...

  TL16C552A是流行的TL16C550B异步通信元件(ACE)的增强型双通道版本。该器件在微机或微处理器系统中同时提供两个串行输入/输出接口。每个通道对从外围设备或调制解调器接收的数据字符执行串行到并行转换,并对由CPU传输的数据字符进行并行到串行转换。在功能操作期间,CPU可以随时读取双ACE的每个通道的完整状态。获得的信息包括正在执行的传输操作的类型和条件以及遇到的错误条件。 除了双通信接口功能外,TL16C552A还为用户提供双向并行数据端口,完全支持并行Centronics型打印机接口。并行端口和两个串行端口为IBM PC /AT兼容计算机提供单个设备,以便为三个系统端口提供服务。可编程波特率发生器可以将定时参考时钟输入除以1和(2 16 -1)之间的除数。 TL16C552A采用68引脚塑料引线芯片载体(FN)封装和80引脚TQFP(PN)封装。 TL16C552AM采用68引脚陶瓷四方扁平(HV)封装。 特性 IBM PC /AT TM 兼容 两个TL16C550 ACE 增强型双向打印机端口 16字节FIFO可减少CPU中断 高达16-MHz时钟速率,最高可达1-Mbaud操作 发送,接收每个通道独立控制的线路状态和数据集中断...

  TL16C750是TL16C550C异步通信元件(ACE)的功能升级,后者又是TL16C450的功能升级。功能上与TL16C450上电(字符或TL16C450模式)相同,TL16C750与TL16C550C一样,可以置于备用模式(FIFO模式)。这通过缓冲接收和传输的字符来减轻CPU过多的软件开销。接收器和发送器FIFO最多可存储64个字节,包括接收器FIFO每字节的三个附加错误状态位。用户可以选择16字节FIFO模式或扩展64字节FIFO模式。在FIFO模式下,有一个可选择的自动流控制功能,通过自动控制通过RTS \输出和CTS \输入信号的串行数据流,可以显着减少软件过载并提高系统效率(见图1)。 TL16C750对从外围设备或调制解调器接收的数据进行串并转换,并对从CPU接收的数据进行并行到串行转换。 CPU可以随时读取ACE状态。 ACE包括完整的调制解调器控制功能和处理器中断系统,可以对其进行定制以最大限度地减少通信链路的软件管理。 TL16C750 ACE包含一个可编程波特率发生器,能够将参考时钟除以1到(2 16 - 1)的除数,并为内部产生16倍参考时钟发射机逻辑。还包括使用该16×时钟作为接收器逻辑的规定。 ACE可容纳1 M...

  PC16552D是PC16550D通用异步接收器/发送器(UART)的双重版本。除了通用CPU接口和晶体输入外,两个串行通道完全独立。上电时,两个通道在功能上与16450 *相同。每个通道都可以使用片上发送器和接收器FIFO(FIFO模式)来减轻CPU过多的软件开销。在FIFO模式下,每个通道都能够在发送器和接收器中缓冲16个字节(加上RCVR FIFO中每字节3位错误数据)的数据。所有FIFO控制逻辑都在片内,以最大限度地降低系统开销并最大限度地提高系统效率。 DMA传输的信号通过每个通道的两个引脚(TXRDY#和RXRDY#)完成。 RXRDY#功能在一个引脚上与OUT 2#和BAUDOUT功能复用。 CPU可以通过新的寄存器(备用功能寄存器)选择这些功能。 每个通道对从外围设备或MODEM接收的数据字符执行串并转换,并行到串行转换从CPU接收的数据字符。 CPU可以随时读取每个通道的完整状态。报告的状态信息包括DUART执行的传输操作的类型和条件,以及任何错误条件(奇偶校验,溢出,成帧或中断)。 DUART包括一个可编程波特率每个通道的发生器。每个能够将时钟输入除以1的除数(2 16 - 1),并产生16...

  TL16C450是异步通信元件(ACE)的CMOS版本。它通常在微机系统中作为串行输入/输出接口工作。 TL16C450对从外围设备或调制解调器接收的数据执行串并转换,并对接收到的数据进行并行到串行转换从它的CPU。 CPU可以在ACE操作的任何位置读取和报告ACE的状态。报告的状态信息包括正在进行的传输操作类型,操作状态以及遇到的任何错误情况。 TL16C450 ACE包括一个可编程的板载波特率发生器。该发生器能够将参考时钟输入除以从1到(2 16 -1)的除数,并产生16×时钟用于驱动内部发送器逻辑。包括使用该16×时钟来驱动接收器逻辑的规定。 ACE中还包括完整的调制解调器控制功能和处理器中断系统,可根据用户的要求定制软件,以最大限度地减少处理通信链路所需的计算。 特性 可编程波特率发生器允许将任意输入参考时钟除以1(2 16 -1)并生成内部16×时钟 完全双缓冲无需精确同步 在串行数据流中添加或删除标准异步通信位(启动,停止和奇偶校验) 独立接收器时钟输入 发送,接收,线路状态和数据集中断独立控制 完全可编程串行接口特性: 5-,6-,7-或8-位字符 偶数,奇数或无奇偶校验位生成和检测 1-,1 1 /2- ,或2位停止...

  TL16C451和TL16C452提供单通道和双通道(分别)串行接口以及单个Centronix型并行端口接口。串行接口为从外围设备或调制解调器接收的数据提供串并转换,并为CPU传输的数据提供并行到串行转换。并行接口提供双向并行数据端口,完全符合Centronix型打印机接口的要求。 CPU可以在操作中的任何位置读取异步通信元素(ACE)接口的状态。状态包括调制解调器信号的状态(CTS \,DSR \,RLSD \和RI)以及自上次读取以来发生的这些信号的任何变化,发送器和接收器的状态,包括检测到的错误收到的数据和打印机状态。 TL16C451和TL16C452提供对调制解调器信号(RTS \和DTR \),中断使能,波特率编程和并行端口控制信号的控制。 特性 集成来自IBM PC /AT TM 的大多数通信卡功能或与单通道或双通道串行兼容端口 TL16C451由一个TL16C450 Plus Centronix打印机接口组成 TL16C452由两个TL16C450和一个Centronix型打印机接口组成 完全可编程串行接口特性: 5-,6-,7-或8-位字符 偶数,奇数或无奇偶校验位生成和检测 1,1 1 /2-或2停止位生成 可编程波特率(直流至256 kbit /s) 完全双重缓冲以实现...

  TL16C554和TL16C554I是TL16C550B异步通信元件(ACE)的增强型四倍版本。每个通道对从外围设备或调制解调器接收的数据字符执行串行到并行转换,并对由CPU传输的数据字符进行并行到串行转换。在功能操作期间,CPU可以随时读取四重ACE的每个通道的完整状态。获得的信息包括所执行操作的类型和条件以及遇到的任何错误条件。 TL16C554和TL16C554I四重ACE可以置于备用FIFO模式,激活内部FIFO以允许16个字节(在接收器FIFO中每字节加三位错误数据)以接收和发送模式存储。为了最小化系统开销并最大化系统效率,所有逻辑都在芯片上。两个终端功能允许直接存储器访问(DMA)传输的信令。每个ACE都包含一个可编程波特率发生器,可以将定时参考时钟输入除以1和(2 16 -1)之间的除数。 TL16C554和TL16C554I可用采用68引脚塑料引线芯片载体(PLCC)FN封装和80引脚(TQFP)PN封装。 特性 集成异步通信元素 由四个改进的TL16C550 ACE加上转向逻辑组成 在FIFO中模式,每个ACE发送器和接收器都使用16字节FIFO缓冲,以减少CPU中断次数 在TL16C450模式下,保持和移位寄存器无...

  TL16C554A是TL16C550C异步通信元件(ACE)的增强型四重版本。每个通道对从外围设备或调制解调器接收的数据字符执行串行到并行转换,并对由CPU传输的数据字符进行并行到串行转换。在运行期间,CPU可以随时读取四重ACE的每个通道的完整状态。获得的信息包括所执行操作的类型和条件以及遇到的任何错误条件。 TL16C554A四重ACE可以置于备用FIFO模式,激活内部FIFO以允许16个字节(加上三个)接收器FIFO中每字节的错误数据位,以接收和发送模式存储。在FIFO操作模式下,有一个可选择的自动流控制功能,可以使用 RTS 输出自动控制串行数据流,从而显着降低软件开销并提高系统效率和 CTS 输入信号。所有逻辑都在芯片上,以最大限度地减少系统开销并最大化系统效率两个终端功能允许发送直接内存访问(DMA)传输信号。每个ACE都包含一个可编程波特率发生器,可以将定时参考时钟输入除以1到2之间的除数 16 ?? 1. TL16C554A采用68引脚塑料引线芯片载体(PLCC)FN封装,64引脚塑料四方扁平封装(PQFP)PM封装和80引脚(TQFP)封装PN包。 特性 集成异步通信元素 由四个改进的TL16C55...

  TL16C552是流行的TL16C550异步通信元件(ACE)的增强型双通道版本。该器件在微机或微处理器系统中同时提供两个串行输入/输出接口。每个通道对从外围设备或调制解调器接收的数据字符执行串行到并行转换,并对由CPU传输的数据字符进行并行到串行转换。在功能操作期间,CPU可以随时读取双ACE的每个通道的完整状态。获得的信息包括正在执行的传输操作的类型和条件以及错误条件。 除了双通信接口功能外,TL16C552还为用户提供了完全支持并行Centronics型打印机的完全双向并行数据端口。并行端口和两个串行端口为IBM PC /AT兼容计算机提供单个设备,以便为三个系统端口提供服务。 包含一个可编程波特率发生器,它可以将定时参考时钟输入除以1和(2 16 - 1)之间的除数。 TL16C552采用68引脚塑料引线芯片载体封装。 特性 IBM PC /AT TM 兼容 两个TL16C550 ACE 增强型双向打印机端口 16字节FIFO减少CPU中断 独立控制每个通道上的发送,接收,线路状态和数据集中断 每个通道的各个调制解调器控制信号 每个通道的可编程串行接口特性: 5-,6-,7-或8位字符 Even - ,奇数或无奇偶校验位生成和...

  TL16C550C和TL16C550CI是TL16C550B异步通信元件(ACE)的功能升级,后者又是TL16C450的功能升级。功能上与TL16C450上电(字符或TL16C450模式)相同,TL16C550C和TL16C550CI(如TL16C550B)可以置于备用FIFO模式。这通过缓冲接收和传输的字符来减轻CPU过多的软件开销。接收器和发送器FIFO最多可存储16个字节,包括接收器FIFO每字节的三个附加错误状态位。在FIFO模式下,有一个可选择的自动流控制功能,可以通过使用RTS \输出和CTS \输入信号自动控制串行数据流来显着减少软件过载并提高系统效率。 TL16C550C和TL16C550CI执行从外围设备或调制解调器接收的数据的串行到并行转换,以及从CPU接收的数据的并行到串行转换。 CPU可以随时读取ACE状态。 ACE包括完整的调制解调器控制功能和处理器中断系统,可以对其进行定制,以最大限度地减少通信链路的软件管理。 TL16C550C和TL16C550CI ACE都包含一个可编程的波特率发生器,能够划分参考时钟由除数从1到65535,并为内部发送器逻辑产生16×参考时钟。包括使用该16×时钟作为接收器逻辑的规定。 ACE适用于1 Mbaud串...

  PC16550D设备是原始16450通用异步接收器/发送器(UART)的改进版本。功能上与16450上电时相同(CHARACTER模式:也可以在软件控制下复位到16450模式)PC16550D可以进入备用模式(FIFO模式),以减轻CPU过多的软件开销。 在此模式下,内部FIFO被激活,允许在接收和发送模式下存储16个字节(RCVR FIFO中每个字节的3位错误数据)。所有逻辑都在芯片上以最小化系统开销并最大化系统效率。两个引脚功能已更改为允许发送DMA传输信号。 UART对从外围设备或MODEM接收的数据字符执行串并转换,并对数据进行并行到串行转换从CPU接收的字符。在功能操作期间,CPU可以随时读取UART的完整状态。报告的状态信息包括UART执行的传输操作的类型和条件,以及任何错误条件(奇偶校验,溢出,成帧或中断中断)。 UART包含可编程波特率能够将定时参考时钟输入除以1的除数(2 16 ?? 1),并产生16×时钟以驱动内部发送器逻辑的发生器。还包括使用该16×时钟来驱动接收器逻辑的规定。 UART具有完整的MODEM控制功能和处理器中断系统。中断可以根据用户的要求进行编程,最大限度地减少处理通信链路所需的计算...

  TL16C550D和TL16C550DI是TL16C550C异步通信元件(ACE)的速度和工作电压升级(但功能等同物),后者又具有功能升级TL16C450。功能上与TL16C450上电(字符或TL16C450模式)相同,TL16C550D和TL16C550DI(如TL16C550C)可以置于备用FIFO模式。这通过缓冲接收和传输的字符来减轻CPU过多的软件开销。接收器和发送器FIFO最多可存储16个字节,包括接收器FIFO每字节的三个附加错误状态位。在FIFO模式下,有一个可选择的自动流控制功能,可以使用 RTS 输出和 CTS 输入信号。 TL16C550D和TL16C550DI对从外围设备或调制解调器接收的数据执行串行到并行转换,并行转换为对从其CPU接收的数据进行串行转换。 CPU可以随时读取ACE状态。 ACE包括完整的调制解调器控制功能和处理器中断系统,可以对其进行定制,以最大限度地减少通信链路的软件管理。 TL16C550D和TL16C550DI ACE都包含一个可编程的波特率发生器,能够划分参考时钟由除数从1到65535,并为内部发送器逻辑产生16×参考时钟。包括使用该16×时钟作为接收器逻辑的规定。 ACE最高可支持1.5 Mbaud串行速率(24 MHz...

  TL16C2552是双通用异步接收器和发送器(UART)。它集成了两个TL16C550D UART的功能,每个UART都有自己的寄存器组和FIFO。两个UART仅共享数据总线接口和时钟源,否则它们独立运行。 UART功能的另一个名称是异步通信元件(ACE),这些术语将可互换使用。本文档的大部分内容描述了每个ACE的行为,并了解TL16C2552中集成了两个这样的设备。 每个ACE都是TL16C550C的速度和电压范围升级,而TL16C550则是TL16C450的功能升级。在上电或复位(单字符或TL16C450模式)时,功能相当于TL16C450,每个ACE都可以置于备用FIFO模式。这通过缓冲接收和传输的字符来减轻CPU过多的软件开销。每个接收器和发送器在其各自的FIFO中存储多达16个字节,接收FIFO包括每个字节三个附加位用于错误状态。在FIFO模式下,可选择的自动流控制功能可以通过使用 RTS 输出和 CTS 输入,从而消除了接收FIFO中的溢出。 每个ACE对从外围设备或调制解调器接收的数据执行串行到并行转换并行数据存储在其接收缓冲区或FIFO中,每个ACE在将并行数据存储到其发送缓冲区或FIFO中后,对从其CPU发送的...

  TL16C754B是一款四通用异步接收器/发送器(UART),具有64字节FIFO,自动硬件/软件流控制,数据速率最高可达3 Mbps的。 TL16C754B提供增强功能。它有一个传输控制寄存器(TCR),用于存储接收的FIFO阈值电平,以便在硬件和软件流控制期间启动/停止传输。使用FIFO RDY寄存器,软件在一次访问中获得所有四个端口的TXRDY /RXRDY状态。片上状态寄存器为用户提供错误指示,操作状态和调制解调器接口控制。可以定制系统中断以满足用户要求。内部环回功能允许板载诊断。 UART在TX信号上发送从外设8位总线发送给它的数据,并接收RX信号上的字符。字符可以编程为5,6,7或8位。 UART具有64字节接收FIFO和发送FIFO,可编程为在不同触发电平下中断。 UART根据可编程除数及其输入时钟生成自己想要的波特率。它可以发送偶数,奇数或无奇偶校验以及1,1.5或2个停止位。接收器可以检测中断,空闲或帧错误,FIFO溢出和奇偶校验错误。发送器可以检测FIFO下溢。 UART还包含用于调制解调器控制操作,软件流控制和硬件流控制功能的软件接口。 TL16C754B采用80引脚TQFP和68引脚PLCC封装。

  TIR1000x串行红外(SIR)编码器和解码器是一种CMOS器件,可对符合IrDA规范的位数据进行编码和解码。

  TL16C451和TL16C452提供单通道和双通道(分别)串行接口以及单个Centronix型并行端口接口。串行接口为从外围设备或调制解调器接收的数据提供串并转换,并为CPU传输的数据提供并行到串行转换。并行接口提供双向并行数据端口,完全符合Centronix型打印机接口的要求。 CPU可以在操作中的任何位置读取异步通信元素(ACE)接口的状态。状态包括调制解调器信号的状态(CTS \,DSR \,RLSD \和RI)以及自上次读取以来发生的这些信号的任何变化,发送器和接收器的状态,包括检测到的错误收到的数据和打印机状态。 TL16C451和TL16C452提供对调制解调器信号(RTS \和DTR \),中断使能,波特率编程和并行端口控制信号的控制。 特性 集成来自IBM PC /AT TM 的大多数通信卡功能或与单通道或双通道串行兼容端口 TL16C451由一个TL16C450 Plus Centronix打印机接口组成 TL16C452由两个TL16C450和一个Centronix型打印机接口组成 完全可编程串行接口特性: 5-,6-,7-或8-位字符 偶数,奇数或无奇偶校验位生成和检测 1,1 1 /2-或2停止位生成 可编程波特率(直流至256 kbit /s) 完全双重缓冲以实现...

  TPIC8101是一款双通道信号处理IC,用于检测内燃机的过早爆震。两个传感器通道可通过SPI总线选择。爆震传感器通常向放大器输入提供电信号。通过可编程带通滤波器处理感测信号以提取感兴趣的频率(发动机爆震或ping信号)。带通滤波器消除了与燃烧相关的任何发动机背景噪声。与预失真噪声相比,发动机背景噪声的幅度通常较低。 通过使用INT /HOLD信号对检测到的信号进行全波整流和积分。积分级的数字输出要么转换为模拟信号,要么通过输出缓冲器,要么直接由SPI读取。 这个模拟缓冲输出可以连接到A /D转换器,由微处理器读取。数字输出可以直接连接到微处理器。 来自A /D的数据使系统能够分析下一个火花点火正时周期的延迟时间量。通过微处理器闭环系统,提前和延迟火花正时可以优化特定发动机的负载/转速条件(存储在RAM中的数据)。 特性 符合汽车应用要求 AEC-Q100符合以下结果: 设备温度等级1:?? 40°C至125°C 环境工作温度范围 设备HBM分类等级3A 设备CDM分类等级C6 双通道爆震传感器接口 可编程输入频率预分频器(OSCIN) 带微处理器的串行接口(SPI) 可编程增益 可编程带通滤波器中心频率 外部...

  TL16C752CI-Q1是一款双路通用异步收发器(UART),具有64字节先入先出(FIFO)以及自动硬件和软件流控制功能,数据传输速率最高可达3Mbps。该器件具备增强功能的磁场感测解决方案。该器件具有一个传输字符控制寄存器(TCR),可存储接收到的FIFO阈值电平,用于在硬件和软件流控制过程中启动或停止传输。 凭借FIFO RDY寄存器,软件只需执行单次访问即可获得两个端口的TXRDY或RXRDY状态。片上状态寄存器可为用户提供错误指示,运行状态以及调制解调器接口控制。内部环回功能支持板上诊断.TL16C752CI-Q1整合了两个UART的功能,每个UART具备各自的寄存器集和FIFO。两个UART只有共享数据总线接口和时钟源,除此之外都是独立运行的.UART功能也称作异步通信元件(ACE),这两个术语可互换使用本文档主要介绍每个ACE的行为,并让读者了解到TL16C752CI-Q1器件中整合了这两个ACE。 特性 符合汽车级Q100标准 SC16C752B和XR16M752引脚兼容其他增强功能 支持1.8V,2.5V,3.3V或5V电源 运行温度范围为-40°C至+ 105°C 支持高达: 48MHz振荡器输入时钟(3Mbps),面向...

  ?? 754C是四通用异步接收器发送器(UART),具有64字节FIFO,自动硬件和软件流控制,数据速率高达3 Mbps。它集成了四个UART的功能,每个UART都有自己的寄存器组和FIFO。四个UART仅共享数据总线接口和时钟源,否则它们独立运行。 UART功能的另一个名称是异步通信元件(ACE),这些术语可互换使用。本文档的大部分内容描述了每个ACE的行为,并理解将四个这样的设备合并到?? 754C中。 ?? 754C提供增强功能。它有一个传输控制寄存器(TCR),用于存储接收的FIFO阈值电平,以便在硬件和软件流控制期间启动或停止传输。使用FIFO RDY寄存器,软件在一次访问中获得所有四个端口的TXRDY /RXRDY状态。片上状态寄存器为用户提供错误指示,操作状态和调制解调器接口控制。可以定制系统中断以满足用户要求。内部环回功能允许板载诊断。 每个UART在TX信号上发送从外设8位总线发送给它的数据,并接收RX信号上的字符。字符可以编程为5,6,7或8位。 UART具有64字节接收FIFO和发送FIFO,可编程为在不同触发电平下中断。 UART根据可编程除数及其输入时钟生成自己想要的波特率。它可以传输偶数,奇...

  TL16C2752是TL16C2552的速度和功能升级。由于它们的引脚排列和软件兼容,如果需要,设计可以轻松地从TL16C2552迁移到TL16C2752。 TL16C2752内的附加功能可通过扩展寄存器组访问。一些关键的新功能是更大的接收和发送FIFO,嵌入式IrDA编码器和解码器,RS-485收发器控制,软件流控制(Xon /Xoff)模式,可编程发送FIFO阈值,中断的扩展接收和发送阈值电平,以及流量控制暂停/恢复操作的扩展接收阈值电平。 TL16C2752是双通用异步接收器和发送器(UART)。它集成了两个独立UART的功能:每个UART都有自己的寄存器组,发送和接收FIFO。两个UART仅共享数据总线接口和时钟源,否则它们独立运行。 UART功能的另一个名称是异步通信元素(ACE),这些术语可以互换使用。本文档的大部分内容描述了每个ACE的行为,并了解TL16C2752中集成了两个这样的器件。 在上电或复位时功能相当于TL16C450(单字符或TL16C450模式),每个ACE都可以置于备用FIFO模式。这通过缓冲接收和待传输的字符来减轻CPU过多的软件开销。每个接收器和发送器在其各自的FIFO中存储多达64个字节,接收FIFO包括每个...

  NS16C2552和NS16C2752是双通道通用异步接收器/发送器(DUART)。占位面积和功能与PC16552D兼容,同时为UART设备添加了新功能。这些功能包括低电压支持,5V容限输入,增强功能,增强的寄存器设置和更高的数据速率。 两个串行通道完全相互独立,除了常见的CPU接口和晶振输入。上电时,两个通道在功能上与PC16552D完全相同。每个通道都可以使用片上发送器和接收器FIFO(在FIFO模式下)。 在FIFO模式下,每个通道能够缓冲16个字节(对于NS16C2552)或64个字节(对于NS16C2752)的数据在发射器和接收器中。接收器FIFO每个位置还有3位错误数据。所有FIFO控制逻辑都在片内,以最大限度地降低系统软件开销并最大限度地提高系统效率。 为了提高CPU处理带宽,DUART和CPU之间的数据传输可以使用DMA控制器完成。 DMA传输的信令通过每个通道两个引脚完成( TXRDY 和 RXRDY )。 RXRDY 函数在一个引脚上复用 OUT2 和BAUDOUT函数。配置是通过备用功能寄存器。 UART的基本功能是在并行和串行数据之间进行转换。串行到并行转换在UART接收器上完成,并且在发送器上进行并行到...

  TL16C2550是双通用异步接收器和发送器(UART)。它集成了两个TL16C550D UART的功能,每个UART都有自己的寄存器组和FIFO。两个UART仅共享数据总线接口和时钟源,否则它们独立运行。 uart函数的另一个名称是异步通信元素(ACE),这些术语可以互换使用。本文档的大部分内容描述了每个ACE的行为,并了解TL16C2550中包含两个这样的设备。 每个ACE都是TL16C550C的速度和电压范围升级,而TL16C550则是TL16C450的功能升级。在上电或复位(单字符或TL16C450模式)时,功能相当于TL16C450,每个ACE都可以置于备用FIFO模式。这通过缓冲接收和传输的字符来减轻CPU过多的软件开销。每个接收器和发送器在其各自的FIFO中存储多达16个字节,接收FIFO包括每个字节三个附加位用于错误状态。在FIFO模式下,可选择的自动流控制功能可以通过使用 RTS 输出和 CTS 输入,从而消除了接收FIFO中的溢出。 每个ACE对从外围设备或调制解调器接收的数据执行串行到并行转换并行数据存储在其接收缓冲区或FIFO中,每个ACE在将并行数据存储到其发送缓冲区或FIFO中后,对从其CPU发送的数据执...

  TL16C752D-Q1是一款双路通用异步收发器(UART),具有64字节FIFO以及自动硬件和软件流控制功能,数据传输该率器件具有一个传输字符控制寄存器(TCR),可存储接收到的FIFO阈值电平,从而在硬件和软件流控制过程中启动或停止传输。 凭借FIFO RDY寄存器,软件只需执行单次访问即可获得两个端口的TXRDY或RXRDY状态。片上状态寄存器可为用户提供错误指示,运行状态以及调制解调器接口控制。可根据用户要求定制系统中断。内部环回功能支持板上诊断.TL16C752D-Q1整合了两个UART的功能,每个UART具备各自的寄存器集和FIFO。 两个UART只共享数据总线接口和时钟源,除此之外都是独立运行的.UART功能也称作异步通信元件(ACE),这两个术语可互换使用。档主要介绍每个ACE的行为并让读者了解TL16C752D-Q1器件中整合了这两个ACE。 特性 符合汽车级Q100标准 与TL16C2550引脚兼容,可通过改进的先入先出(FIFO)寄存器提供增强功能 支持1.62V至5.5V的宽电源电压范围 5V时为3Mbps(48MHz振荡器输入时钟) 3.3V时为2Mbps(32MHz振荡器输入时钟) 2.5V时为1.5Mbps(24M...

  TL16C752C是一款双路通用异步收发器(UART),具有64字节先入先出(FIFO)以及自动硬件和软件流控制功能,数据传输速率最高可达3Mbps。该器件具备增强功能的磁场感测解决方案。该器件具有一个传输字符控制寄存器(TCR),可存储接收到的FIFO阈值电平,用于在硬件和软件流控制过程中启动或停止传输。 凭借FIFO RDY寄存器,软件只需执行单次访问即可获得两个端口的TXRDY或RXRDY状态。片上状态寄存器可为用户提供错误指示,运行状态以及调制解调器接口控制。可根据用户要求定制系统中断。内部环回功能支持板上诊断.TL16C752C整合了两个UART的功能,每个UART具备各自的寄存器集和FIFO。两个UART只共享数据总线接口和时钟源,除此之外都是独立运行的.UART功能也称作异步通信元件(ACE),这两个术语可以互使用。本文档要介绍每个ACE的行为,并让读者了解到TL16C752C器件中整合了这两个ACE。 特性 SC16C752B和XR16M752引脚兼容其他增强功能 支持1.8V,2.5V,3.3V或5V电源

  运行温度范围为-40°C至85°C 支持高达: 48MHz振荡器输入时钟(3Mbps),面向5V工作电...

  TL28L92是SC26C92的引脚和功能替代产品,工作电压为3.3 V或5 V,具有更多功能和更深的FIFO。上电时的配置是SC26C92的配置。它与SC26C92的区别在于:16个字符接收器,16个字符发送FIFO,每个接收器的看门狗定时器,模式寄存器0,扩展波特率和整体更快的速度,可编程接收器和发送器中断。 Pin编程将允许设备使用Motorola或Intel总线接口。如果要求严格符合SC26C92 FIFO结构,MR0A寄存器的第3位允许器件以8字节FIFO模式工作。 德州仪器TL28L92双通用异步接收器/发送器(DUART)是单芯片CMOS-LSI通信器件,在单个封装中提供两个全双工异步接收器/发送器通道。它直接与微处理器连接,可用于带调制解调器和DMA接口的轮询或中断驱动系统。 每个通道的操作模式和数据格式可以独立编程。此外,每个接收器和发送器可以选择其工作速度作为28个固定波特率之一; 16×时钟源自可编程计数器/定时器,或外部1×或16×时钟。波特率发生器和计数器/定时器可以直接从晶振或外部时钟输入操作。独立编程接收器和发送器的运行速度的能力使DUART特别适用于集群终端系统等双速通道应用。 每个接收器和发送器由8或16个字符的F...

  TL16C2550是双通用异步接收器和发送器(UART)。它集成了两个TL16C550D UART的功能,每个UART都有自己的寄存器组和FIFO。两个UART仅共享数据总线接口和时钟源,否则它们独立运行。 uart函数的另一个名称是异步通信元素(ACE),这些术语可以互换使用。本文档的大部分内容描述了每个ACE的行为,并了解TL16C2550中包含两个这样的设备。 每个ACE都是TL16C550C的速度和电压范围升级,而TL16C550则是TL16C450的功能升级。在上电或复位(单字符或TL16C450模式)时,功能相当于TL16C450,每个ACE都可以置于备用FIFO模式。这通过缓冲接收和传输的字符来减轻CPU过多的软件开销。每个接收器和发送器在其各自的FIFO中存储多达16个字节,接收FIFO包括每个字节三个附加位用于错误状态。在FIFO模式下,可选择的自动流控制功能可以通过使用 RTS 输出和 CTS 输入,从而消除了接收FIFO中的溢出。 每个ACE对从外围设备或调制解调器接收的数据执行串行到并行转换并行数据存储在其接收缓冲区或FIFO中,每个ACE在将并行数据存储到其发送缓冲区或FIFO中后,对从其CPU发送的数据执...

  NS16C2552和NS16C2752是双通道通用异步接收器/发送器(DUART)。占位面积和功能与PC16552D兼容,同时为UART设备添加了新功能。这些功能包括低电压支持,5V容限输入,增强功能,增强的寄存器设置和更高的数据速率。 两个串行通道完全相互独立,除了常见的CPU接口和晶振输入。上电时,两个通道在功能上与PC16552D完全相同。每个通道都可以使用片上发送器和接收器FIFO(在FIFO模式下)。 在FIFO模式下,每个通道能够缓冲16个字节(对于NS16C2552)或64个字节(对于NS16C2752)的数据在发射器和接收器中。接收器FIFO每个位置还有3位错误数据。所有FIFO控制逻辑都在片内,以最大限度地降低系统软件开销并最大限度地提高系统效率。 为了提高CPU处理带宽,DUART和CPU之间的数据传输可以使用DMA控制器完成。 DMA传输的信令通过每个通道两个引脚完成( TXRDY 和 RXRDY )。 RXRDY 函数在一个引脚上复用 OUT2 和BAUDOUT函数。配置是通过备用功能寄存器。 UART的基本功能是在并行和串行数据之间进行转换。串行到并行转换在UART接收器上完成,并且在发送器上进行并行到...

  TL16C752D是一款双路通用异步收发器(UART),具有64字节FIFO以及自动硬件和软件流控制功能,数据传输速率最高可达3Mbps。该器件具备增强功能的磁场感测解决方案。该器件具有一个传输字符控制寄存器(TCR),可存储接收到的FIFO阈值电平,从而在硬件和软件流控制过程中启动或停止传输。 凭借FIFO RDY寄存器,软件只需执行单次访问即可获得两个端口的TXRDY或RXRDY状态。片上状态寄存器可用于用户提供错误指示,运行状态以及调制解调器接口控制。可根据用户要求定制系统中断。内部环回功能支持板上诊断.TL16C752D整合了两个UART的功能,每个UART都有自己的寄存器集和FIFO。 两个UART只共享数据总线接口和时钟源,除此之外都是独立运行的.UART功能也称作异步通信元件(ACE),这两个术语可以互使用。本文档主要介绍每个ACE的行为,并让读者了解到TL16C752D器件中整合了这两个ACE。 特性 与 TL16C2550 引脚兼容,可通过 改进的先入先出 (FIFO) 寄存器 提供增强功能支持 1.62V 至 5.5V 的宽电源电压范围 5V 时为 3Mbps(48MHz 振荡器输入时钟) 3.3V 时为 3Mbps(48MHz...

  TMP411设备是一个带有内置本地温度传感器的远程温度传感器监视器。远程温度传感器,二极管连接的晶体管通常是低成本,NPN或PNP型晶体管或二极管,是微控制器,微处理器或FPGA的组成部分。 远程精度为1 C适用于多个设备制造商,无需校准。双线串行接口接受SMBus写字节,读字节,发送字节和接收字节命令,以设置报警阈值和读取温度数据。 TMP411器件中包含的功能包括:串联电阻取消,可编程非理想因子,可编程分辨率,可编程阈值限制,用户定义的偏移寄存器,用于最大精度,最小和最大温度监视器,宽远程温度测量范围(高达150C),二极管故障检测和温度警报功能。 TMP411器件采用VSSOP-8和SOIC-8封装。 特性 1C远程二极管传感器 1C本地温度传感器 可编程非理想因素 串联电阻取消 警报功能 系统校准的偏移寄存器 与ADT7461和ADM1032兼容的引脚和寄存器 可编程分辨率:9至12位 可编程阈值限...



友情链接:
Copyright 2018-2021 香港挂牌最完整篇彩图 版权所有,未经授权,禁止转载。

香港本期开奖结果| 今晚开奖结果| 开奖直播| 白小姐心水论坛| www.520789.com| 香港大赢家心水论坛| 新飞财富高手坛| 香港挂牌正版彩图201786期| 铁算盘开码资料| 黄大仙一肖论坛| www.933833.com| 41555六合神童|